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ABSTRACT

Birds must contend with an array of anthropogenic threats during their migratory journeys. Many migrants are killed due to encounters with
artificial light, introduced species, pollutants, and other anthropogenic hazards, while survivors of these encounters can suffer longerlasting
negative effects. The nonlethal effects of anthropogenic threats on migrating birds are less well understood than direct mortality, yet both poten-
tially contribute to population declines. For example, building collisions frequently kill migrating birds, but the numbers of migrants that survive
with an impaired ability to fly, refuel, or navigate to their destination on time is not well understood. Though not immediately fatal, such injuries
can lead to delayed mortality and, ultimately, reduced lifetime reproductive success. Furthermore, migrants are likely to encounter multiple
threats on their journeys, which can interact synergistically to further reduce fitness. For instance, light pollution attracts and disorients migrants,
increasing the likelihood of window strikes, and surviving birds may be more vulnerable to predation from introduced predators. While consid-
erable attention has focused on the lethal effects of anthropogenic threats, here, we review nonlethal effects of eight types of threats during
migration, their interactions, and the pathways through which they can exert fitness costs. In doing so, we identify knowledge gaps and suggest
areas for future research. In the absence of more information, we propose that the greatest reduction in the cumulative lethal and nonlethal
impacts of anthropogenic hazards will be achieved by addressing threat types, like artificial light at night, that interact with and compound the
impact of additional threats. Direct mortality from anthropogenic sources is recognized as a key driver of population declines, but a full under
standing of the impacts of human activity on migrating birds must include the cumulative and interacting effects that extend beyond immediate
mortality en route to influence overall migration success and lifetime fitness.
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LAY SUMMARY

e Migrating birds around the world face a wide variety of threats from human activity and many species are declining significantly.

* Many migrants are killed by these threats, while those exposed but not immediately killed may experience changes in their condition, migra-
tion timing, orientation, or route.

e Nonlethal effects of threats during migration, such as sensory pollutants and introduced species, have not been well-studied but are likely
contributing to population declines by lowering future survival or reproduction.

¢ \\Ve review support for the nonlethal impacts of eight anthropogenic threats, describe how they can cause nonlethal fitness costs for migrating
birds, and identify knowledge gaps.

e Reducing threats that compound the impacts of other threats, such as artificial light at night, will help to minimize the cumulative impacts on
migratory birds.

e Fully capturing the costs of human activity on migratory birds requires understanding both lethal and nonlethal impacts of encounters with
anthropogenic threats during migration.

Mas que mortalidad: Las consecuencias de la actividad humana en las aves migratorias se
extienden mas alla de la mortalidad directa
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RESUMEN

Las aves deben enfrentarse a una variedad de amenazas antropogénicas durante sus viajes migratorios. Muchas aves migratorias mueren
debido a encuentros con luz artificial, especies introducidas, contaminantes y otros peligros antropogénicos, mientras que las aves
sobrevivientes de estos encuentros pueden sufrir efectos negativos de larga duracién. Los efectos no letales de las amenazas antropogénicas
en las aves migratorias son menos comprendidos que la mortalidad directa, pero ambos pueden contribuir potencialmente a la disminucién
de las poblaciones. Por ejemplo, las colisiones con edificios matan frecuentemente aves migratorias, pero no se comprende bien el numero
de migrantes que sobreviven con una capacidad deteriorada para volar, reabastecerse o navegar a tiempo hacia su destino. Aunque no sean
fatales de modo inmediato, estas lesiones pueden conducir a una mortalidad posterior y, en Ultima instancia, a una reduccion del éxito
reproductivo a lo largo de la vida. Ademas, es probable que las aves migratorias encuentren multiples amenazas en sus viajes, las cuales
pueden interactuar sinérgicamente para reducir ain mas su aptitud bioldgica. Por ejemplo, la contaminacién luminica atrae y desorienta a
las aves migratorias, aumentando su probabilidad de colisionar con ventanas, y las aves que sobreviven pueden ser mas vulnerables a la
depredacién por especies introducidas. Si bien se ha prestado considerable atencién a los efectos letales de las amenazas antropogénicas,
aqui revisamos los efectos no letales de 8 tipos de amenazas durante la migracién, sus interacciones vy las vias a través de las cuales
pueden ejercer costos en la aptitud bioldgica. Al hacerlo, identificamos lagunas de conocimiento y sugerimos areas para investigaciones
futuras. A falta de mas informacion, proponemos que la mayor reduccién en los impactos acumulativos letales y no letales de las amenazas
antropogénicas se lograra atendiendo aquellas amenazas, como la luz artificial durante la noche, que interactian y agravan el impacto de
otras amenazas adicionales. La mortalidad directa debido a fuentes antropogénicas se reconoce como un factor clave en la disminucion de
las poblaciones, pero para comprender completamente los impactos de la actividad humana en las aves migratorias, es necesario considerar
los efectos acumulativos e interactivos que van mas allé de la mortalidad inmediata en ruta y que influyen en el éxito general de la migracién

y la aptitud biolégica a lo largo de la vida.

Palabras clave: amenazas antropogénicas, conservacion de aves, costos de aptitud, efectos indirectos, efectos no letales, estresores antropogénicos,

impactos demograficos, migracion de aves, mortalidad antropogénica

INTRODUCTION

Migration is the most dangerous period of the annual cycle
for migratory birds (Sillett and Holmes 2002, Paxton et al.
2017). During journeys that may span months and cross con-
tinents, birds navigate unfamiliar and variable conditions in
terrestrial, marine, and aerial environments. Migratory birds
are well adapted to overcome the challenges of migration
(Moore 2018) but human activities have increasingly modi-
fied the environments birds encounter en route, especially
in the decades since the advent of the industrial revolution
(Davis 1955). Urbanization, the most drastic transformation
to the landscape, is highly concentrated in mid-temperate
latitudes around the world, south of regions that harbor the
greatest richness of breeding migratory bird species (Seto et al.
2011, Somveille et al. 2013, Zhou et al. 20135). Thus, regions
traversed by migrating birds are increasingly sown with evo-
lutionarily novel threats that can impose considerable costs
on bird fitness (Lambertucci et al. 2015, Cabrera-Cruz et al.
2018, La Sorte et al. 2022). These changes may be inflating
the costs of being a migratory animal (Wilcove and Wikelski
2008, Hardesty-Moore et al. 2018).

Research on anthropogenic threats to birds has frequently
focused on direct mortality sources, defined as hazards such
as window collisions and cat predation that are “character-
ized by relative clarity of cause and effect” (Loss et al. 2015).
Other factors such as climate change are considered indir-
ect mortality sources because they kill birds via intermediate
mechanisms (Loss et al. 2012, 2015; Calvert et al. 2013). Both
direct and indirect anthropogenic mortality sources can also
produce nonlethal effects or “delayed fitness costs” that re-
duce an individual’s future survival probability or reproduct-
ive output (Klaassen et al. 2012, Schmaljohann et al. 2022).
Threat effects may not always materialize at the source and
are likely increasing the challenges of migration in ways that
are typically unaccounted for in estimates of direct mortal-
ity. Despite their potential importance, the nonlethal effects
of anthropogenic threats during migration have only re-
cently begun to receive research attention (Ware et al. 2015,
Seewagen 2020, Overton et al. 2022).

Although threats are often studied in isolation, they can
interact with one another to produce synergistic effects (Dutta
2017, Mahon et al. 2019, Norris et al. 2021, Richard et al.

2021), which may be lethal or nonlethal (Kummer et al. 2016,
Winger et al. 2019, Van Doren et al. 2021, Rebolo-Ifran et al.
2021). Synergistic effects of multiple anthropogenic threats
during migratory periods remain understudied (Dutta 2017,
Richard et al. 2021), yet the repetition, combination, and
interaction of even seemingly minor threats can substantially
increase the extinction risk of wildlife populations (Kimmel et
al. 2022), demonstrating that these effects must not be over-
looked.

A narrow focus on direct mortality from anthropogenic
threats, ignoring nonlethal effects and interactions, substan-
tially underestimates the total cost of human activity on
migrating birds. In this review, we first identify the primary
pathways through which anthropogenic threats can impose
nonlethal fitness costs on birds during migration. These path-
ways include effects on a migrant’s (1) physiological condi-
tion or health, (2) timing of migration, (3) orientation and
navigation ability, and (4) migration route (Figure 1). We
briefly describe the lethal effects (i.e., mortality, both imme-
diate and delayed) that eight anthropogenic threat types have
on migrating birds before summarizing the current know-
ledge of their nonlethal effects (Table 1). We mainly consider
threats to birds migrating through terrestrial (rather than
marine) environments. In cases where nonlethal effects have
only been documented during non-migration phases of the
annual cycle or in non-migratory taxa, we draw from that
literature to hypothesize potential impacts on migrating birds
(as in Seewagen 2020). Next, we identify evidence for cu-
mulative and synergistic effects and explore the mechanisms
through which multiple threats interact to harm migrating
birds. Finally, we highlight knowledge gaps and discuss the
conservation implications and potential pitfalls of failing to
consider other consequences of human activity on migrating
birds beyond direct mortality.

ANTHROPOGENIC THREAT PATHWAYS
LEADING TO FITNESS COSTS

The anthropogenic threats that migrating birds encounter en
route can have lethal fitness costs (mortality) or nonlethal fit-
ness costs that reduce reproductive success or survival during
a future stage of the annual cycle (Senner et al. 2015) (Figure
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FIGURE 1. Conceptual diagram of the pathways through which a single anthropogenic threat, artificial light at night (yellow starburst), can influence
the two components of a successful migration: future survival and reproductive success across the annual cycle (rounded boxes). Threats affect
reproductive success and/or survival through intermediate pathways (gray ovals): by changing a migrant's physical condition, orientation and navigation,
route, or migration timing. Gray arrows are labeled with how linkages between pathways can occur: for example, artificial light at night attracts birds

in flight (affecting orientation), which causes them to change direction and lengthen the distance traveled (affecting route), which leads to increased
energy expenditure in flight (affecting condition). Colored arrows are labeled with the ways that artificial light at night can ultimately decrease survival

probability (orange) and reproductive success (teal) via the four pathways.

TABLE 1. Glossary of terminology used in this article.

Term Definition

Anthropogenic threats

Physical or sensory elements added to the environment, either intentionally by humans or unintentionally as

a byproduct of human activity, that impose fitness costs on migrating birds.

Fitness costs
Lethal effects
Nonlethal effects

Increased mortality, reductions in reproductive success, and/or reductions in future survival probability
Effects of anthropogenic threats that cause immediate or delayed mortality
Effects of anthropogenic threats that cause a reduction in future reproductive output or survival probability,

or that increase susceptibility to the effects of other threats through one or more intermediate mechanisms

Interacting effects
be additive or synergistic

Anthropogenic threats that interact with one another to produce either lethal or nonlethal effects; these may

2). These costs are incurred through four non-mutually ex-
clusive pathways that we describe here. An example of the
pathways through which a single threat can affect fitness is
shown in Figure 1.

Physiological Condition

We use “condition” to refer to both fuel stores (fat) and other
components of health and vitality (Klaassen et al. 2012). Upon

arrival at their destination, migrants must find food, avoid
predators and competitors, and/or seek mates. Their health
and energetic condition at the end of the journey influences
subsequent survival and reproduction (Klaassen et al. 2012,
Halupka et al. 2017, Moore 2018). Encounters with an-
thropogenic threats can change a bird’s condition by reducing
its energy stores through an impaired ability or motivation
to forage (Jenni and Schaub 2003); by causing injury, illness,
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FIGURE 2. Anthropogenic threats (yellow starbursts) can affect migrating birds either individually or in combination with other threat sources. Lethal
effects result in either immediate or delayed mortality. Nonlethal effects can reduce reproductive success or future survival probability (rounded boxes).
Migrants can experience multiple threats en route that influence reproduction or survival independently of one another (additive interaction) or that
interact to have a greater impact on reproduction and/or survival than they would in isolation (synergistic interaction).

or exhaustion (Van Doren et al. 2017, Linscott and Senner
2021); or by increasing disturbance and stress (Le Corre et al.
2009). Threats that reduce physiological condition, particu-
larly fat stores, pose a potential fitness cost by delaying mi-
gration timing (Seewagen and Guglielmo 2010) or hampering
reproduction upon arrival to breeding areas (Sandberg and
Moore 1996).

Migration Timing

Appropriate timing of arrival to breeding, stopover, and sta-
tionary nonbreeding sites is critical for migratory birds to
secure high-quality territories and mates, maximize repro-
ductive potential, secure food resources for refueling, and
avoid adverse weather (Kokko 1999, Smith and Moore 2005,
Schmaljohann and Both 2017). Delays may arise via changes
to a bird’s physical state or route, environmental conditions,
and other factors (Jenni and Schaub 2003, Akesson and Helm
2020). En route conditions that delay a migrant’s arrival
to the breeding area may hinder its reproductive potential
(Sandberg and Moore 1996, Smith and Moore 2005, Costa
et al. 2021), while delayed arrival to nonbreeding areas in
autumn can mean an individual spends the season in poor-
quality habitat, delaying its departure in spring (Studds and
Marra 2007, Cooper et al. 2015, but see Gonzédlez et al.
2020). Arrival timing at stopover sites is also important be-
cause both the needs of a migrating bird and the resources
available at a given stopover site can vary within a season
(Schaub and Jenni 2000, Linscott and Senner 2021, Cohen
et al. 2022b, Schmaljohann et al. 2022). Thus, proper timing
relative to environmental conditions is critical to a migrating
bird’s success, and any threat-related changes to the migration
schedule (typically delays) that a bird would not have experi-
enced otherwise may impose a fitness cost.

Orientation and Navigation

Migratory birds use an internal clock and compass mechan-
ism coupled with a variety of external cues to orient them-
selves and navigate to their destinations (Alerstam et al. 2003,
Akesson and Hedenstrom 2007, Akesson and Helm 2020).
Although birds’ navigation ability is remarkably flexible in
the face of changing en route conditions (Akesson and Helm
2020), anthropogenic threats can interfere with a bird’s abil-
ity to correctly perceive or interpret environmental cues used
for orientation and navigation. Disoriented migrants may
deplete their energy reserves in flight (Ronconi et al. 2015),
imposing fitness costs through reduced condition, delayed
timing, or failure to reach the destination.

Migration Route

Migrating birds are expected to follow routes that minim-
ize overall time, energy, or predation risk over the course of
the journey (Alerstam and Lindstrom 1990, Alerstam 2001).
Anthropogenic changes to the physical and sensory environ-
ment may cause migrating birds to alter or adjust their route,
move to alternative stopover sites, or change their stop-
over frequency (McClure et al. 2013, Xu et al. 2020, Burt
et al. 2023). Threat-related changes to the route presumably
lengthen the duration of migration (i.e., timing) and can af-
fect condition via increased energy expenditure or opportun-
ity costs of using lower-quality stopover or airspace habitat,
potentially leading to costly delays (Alerstam 2001, Overton
et al. 2022).

ANTHROPOGENIC THREAT TYPES

In the sections below, we review the impacts of eight types
of anthropogenic threats to migrating birds, whose lethal
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effects we briefly describe before discussing their supported
and hypothesized nonlethal effects through the pathways
described above. These include (1) human-made structures
(buildings, wind turbines, powerlines, etc.), which represent
some of the largest sources of annual bird mortality during
migration (Calvert et al. 2013, Loss et al. 2015), two sen-
sory pollutants: (2) artificial light at night (ALAN) and (3)
noise pollution; (4) environmental contaminants (focusing
on insecticides and heavy metals); and (5) free-roaming do-
mestic cats (Felis catus). We also included two additional
threats caused or exacerbated by humans that are not typic-
ally considered to cause large-scale direct mortality but may
nonetheless threaten migrating birds: (6) introduced plants
and (7) wildfires. In addition, we consider the overarching ef-
fects of (8) anthropogenic climate change on bird migration.
Increasing wildfire activity is one of many consequences of
climate change, but we chose to discuss these threats separ-
ately due to their different pathways and effects on fitness.
While hunting and trapping is a major threat to migrating
birds globally, particularly in the East Asian-Australasian and
Afro-Palearctic migration systems (Yong et al. 20135, Khelifa
et al. 2017, Buchan et al. 2022), we did not find sufficient
evidence of nonlethal effects of hunting during migration
to include it in this review. We only briefly address stressors
that are a consequence of the removal of elements from the
landscape (e.g., habitat loss and fragmentation), though the
importance of these factors in bird population declines can-
not be understated. We demonstrate how many of these an-
thropogenic threats can cause functional habitat degradation,
effectively reducing the availability of otherwise high qual-
ity or protected airspace and stopover habitats (Ware et al.
20135). It is possible that this synthesis will lead to discussion
of additional nonlethal anthropogenic threats during migra-
tion beyond those we review here.

Anthropogenic Structures

Human-made elements in the airspace have become an in-
creasingly common barrier to migratory movements, and
birds collide with anthropogenic structures throughout the
world’s migration systems (Marques et al. 2014, Santiago-
Alarcon and Delgado-V 2017 Hager et al. 2017, Bernardino
et al. 2018, Pinto et al. 2020, Uddin et al. 2021, Mansouri
et al. 2022). Not all collisions result in observed mortality:
only a small percentage (approximately 6-7%) of collisions
at residential buildings are estimated to be immediately fatal
(Kummer and Bayne 2015, Samuels et al. 2022), but the
long-term survival probability remains largely unknown
(Klem 1990). Estimating the number of collision-related in-
juries and mortalities is therefore challenging because injured
birds may move away from the point of impact (Drewitt and
Langston 2008, Samuels et al. 2022).

In addition to delayed mortality, collisions during migration
can have nonlethal effects that impose a fitness cost. The most
frequent injury in birds surviving collisions is intracranial
hemorrhaging (Klem 1990, Fornazari et al. 2021). In humans
and model animals, traumatic brain injuries result in cogni-
tive impairment (slowed reaction times), amnesia, balance im-
pairment, and sleep/wake disturbance (McCrory et al. 2017).
Symptoms can persist for days in animals (Giza and Hovda
2001), potentially impairing a bird’s ability to refuel and mi-
grate. Collisions may also reduce flight performance and affect
a bird’s ability to continue migrating (Orlowski and Siembieda
20035, Travers et al. 2021) or to properly orient itself. For in-
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stance, a radio-tagged Gray Catbird (Dumetella carolinensis)
that survived a collision in the midwestern U.S. migrated when
it should have been breeding (L. DeGroote, unpublished data),
suggesting that the collision affected the bird’s ability to orient,
navigate, and/or keep track of time. Ocular trauma, another
common collision-related injury, can lead to infection or ne-
crosis (Hudecki and Finegan 2018, Demir and Ozsemir
2021), causing vision impairments that leave birds vulnerable
to predation and less efficient at foraging (Fernandez-Juricic
2012). If they manage to reach the breeding grounds, collision
survivors with broken or dislocated bones may have lower re-
productive success compared to uninjured birds (Townsend et
al. 2011). Nonlethal collision injuries can hence affect a bird’s
ability to evade other threats, reach its intended destination,
and/or successfully reproduce.

Artificial Light at Night

Artificial light at night (ALAN) is an evolutionarily novel
threat that alters the nocturnal landscape with myriad eco-
logical consequences (Rich and Longcore 2006, Burt et
al. 2023). Nocturnally migrating birds are attracted to
light, whether it is emitted by artificial or natural sources
(Gauthreaux and Belser 2006). Nocturnal migrants attracted
to bright floodlights pointing upwards are unable to escape
their influence (i.e., the entrapment effect) and fall to their
death from exhaustion (Van Doren et al. 2017). Similarly,
flares and artificial lights from oil and gas drilling platforms
can attract and disorient birds that die of exhaustion, inhal-
ation of toxic compounds, or incineration (Ronconi et al.
2015). ALAN increases migrating birds’ risk of collisions
with human-made structures (Winger et al. 2019, Van Doren
et al. 2021), increasing the risk of immediate mortality.

Birds that manage to escape entrapment or burning may
still suffer exhaustion or injury, reducing flight performance
and possibly limiting a migrant’s ability to reach a suitable
stopover site for recovery. At the very least, deviation from
the typical route is likely a waste of precious energy (Day et
al. 2015). Light pollution typically attracts migrating birds
(Gauthreaux and Belser 2006 and references therein), though
there is some evidence of avoidance (McLaren et al. 2018).
Attraction to and avoidance of lights may increase the tor-
tuosity of birds’ flight paths at the local scale (Cabrera-Cruz
et al. 2021), or the circuitousness of their migration routes
at broad spatial scales (Korpach et al. 2022), and energy ex-
penditure in flight increases with path sinuosity (Amélineau et
al. 2014). By traversing a nocturnal landscape scattered with
ALAN (Cabrera-Cruz et al. 2018), birds are intermittently
attracted to or repelled by lights along their entire migra-
tion route, with increased energy requirements accumulating
throughout the migration season. Birds may require longer
stopovers to compensate for the increased distance, and/or
may have lower body condition upon reaching their destin-
ation.

ALAN can also directly influence a migrant’s energetic
condition. Both the perception of photoperiod and the pro-
duction of hormones are disrupted by artificial lights (Liu
et al. 2022). Fat deposition of migrating birds is regulated
by photoperiod and hormones (Odum 1960, Cornelius et
al. 2013) and melatonin production, the mechanism linking
photoperiod to behavior, is reduced by ALAN (Dominoni
et al. 2013a, Liu et al. 2022). The disrupted photoperiod of
migrating birds stopping over in heavily light-polluted areas
may affect their ability to rest and refuel, potentially leading
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to delayed departure and late arrival to their destination.
However, exposure to ALAN in captivity did not affect meta-
bolic rate nor food consumption in two migratory sparrow
species (Litt-Jukes 2023). Fat deposition rates of migrating
birds stopping over in some, presumably light-polluted, urban
parks are reportedly similar to those in more natural and pre-
sumably darker areas (Seewagen and Guglielmo 2010, 2011).
On the other hand, artificial lights increase the production of
testosterone in birds (Dominoni et al. 2013b, Ouyang et al.
2018), increased testosterone advances migratory departure
in spring (Tonra et al. 2011, Owen et al. 2014), and ALAN-
exposed birds depart and arrive earlier to their destination
(Smith et al. 2021). While a direct link between testosterone,
ALAN, and departure dates has not been established, the
potential association warrants further investigation. Earlier
departure could hypothetically increase competitive ability
at the destination but might also increase phenological mis-
matches.

Noise Pollution

Human development is accompanied by noise from sources
such as transportation, construction, and energy production
(Shannon et al. 2016, Slabbekoorn et al. 2018). Human ac-
tivity can generate low-frequency noise that propagates over
long distances (Ortega 2012), and the extent and ubiquity
of road and air travel networks means that even protected
natural areas are not safe from noise pollution (Arévalo and
Newhard 2011, Barber et al. 2011, Buxton et al. 2017). In
North America, road networks extend for millions of kilo-
meters and stopover sites are commonly surrounded by roads
(Buler and Dawson 2014, Amaya-Espinel and Hostetler
2019).

Noise pollution is one of the few anthropogenic threats that
rarely causes avian mortality. Instead, anthropogenic noise
typically affects birds nonlethally by interfering with inter-
and intraspecies communication, inducing stress, or causing
birds to alter their behavior and habitat use (Patricelli and
Blickley 2006, Herrera-Montes and Aide 2011, Ortega 2012).
Many birds avoid noisy habitats altogether; those that remain
may adjust their vocal behavior to compensate for chronically
noisy environments, including vocalizing at higher frequen-
cies, volumes, or at different times (Francis and Barber 2013,
Shannon et al. 2016, Slabbekoorn et al. 2018).

Anthropogenic noise can reduce stopover habitat use by
migrating birds. Broadcasting highway traffic noise from
speakers at an autumn stopover site caused a reduction in
bird abundance, and several species avoided this “phantom
road” entirely (McClure et al. 2013). Noise pollution can
mask acoustic cues that birds use to detect predators or prey,
hindering their ability to escape or find food (Francis and
Barber 2013). In noisy environments birds may increase vigi-
lance to reduce predation risk, leaving less time for foraging
(Francis 2015, Ware et al. 2015, McClure et al. 2017).
Consequently, migrating birds that remain at noisy stopover
sites may suffer lower body condition (Ware et al. 2015).

Noise pollution may also interfere with information that
migrants use to assess habitat during both flight and stopover
periods. Migrating birds may use anthropogenic noise to de-
cide where and when to stop over: Cabrera-Cruz et al. (2019)
found that birds increase flight altitude when migrating over
urban areas and hypothesized that noise pollution can deter
them from landing. Migrants in flight can use social informa-
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tion from other birds, including acoustic cues, when deciding
where to land (Chernetsov 2006, Mukhin et al. 2008, Németh
and Moore 2014). Migrants also use social learning to assess
the location of food resources, competitors, and predators at
unfamiliar stopover sites (Németh and Moore 2007, Deakin
et al. 2021, Aikens et al. 2022). Consequently, noise pollu-
tion that masks acoustic cues from avian communities, prey,
or predators may reduce birds’ ability to quickly and safely
refuel, affecting their condition and migration timing, and ul-
timately their fitness.

Environmental Contaminants

Humans’ production and use of toxic substances has in-
creased dramatically over the past century (Bernanke and
Kohler 2009; He et al. 2005). Migrating birds may be par-
ticularly vulnerable to toxicant ingestion since they must
rapidly gain mass at unfamiliar stopover locations to replen-
ish fat and lean mass catabolized during flight (Bairlein and
Gwinner 1994, Klaassen et al. 2012, Seewagen et al. 2016,
Seewagen 2020). While migrating birds may be exposed to
a variety of contaminants (Tanabe et al. 1998, Henkel et al.
2012, Bianchini and Morrissey 2018, Richard et al. 2021, Ma
et al. 2022), we focus on two widespread and well-studied
classes—insecticides and heavy metals—as examples of the
sublethal effects of environmental contaminants on migrating
birds.

Insecticides have been estimated to kill millions of birds
every year (Pimentel 2005) and include compounds in the
classes of organochlorines, organophosphates, carbamates,
and neonicotinoids (Richard et al. 2021). Organochlorines
are the oldest class and infamously include DDT, the use of
which has been banned or heavily restricted in many coun-
tries for decades (Jaga and Dharmani 2003). Neonicotinoids,
the newest class, are currently the most widely used insecticide
in the world (Goulson 2013). They are highly water soluble
(Jeschke et al. 2011) and can accumulate in soil and aquatic
ecosystems (Hladik et al. 2018, Huang et al. 2020), where
they can persist and harm aquatic invertebrates (Morrissey
et al. 2015). Insecticide overuse is contributing to steep insect
population declines (Sanchez-Bayo and Wyckhuys 2019, van
der Sluijs 2020, Barmentlo et al. 2021), reducing prey avail-
ability for insectivorous birds including during migration, and
likely contributing to insectivore population declines (Nebel
et al. 2010, Bowler et al. 2019, Spiller and Dettmers 2019).

All of the insecticide classes described here have the dose-
dependent potential to be immediately lethal to birds, but
sublethal effects can also occur depending on the exposure
concentration, length of exposure, and other factors (Lopez-
Antia et al. 2013, Mitra et al. 2011). Insecticide residues and
metabolites can bioaccumulate in birds (Mora et al. 1987,
Lopez-Antia et al. 2015, Kesic et al. 2021) and may be mobil-
ized from the catabolism of tissues during physically rigorous
activities like migration (Tanaka et al. 1986, Colabuono et
al. 2012). Some insecticides may impact neurological devel-
opment and function (Iwaniuk et al. 2006) or cause appetite
suppression and anorexia (Grue 1982, Elliott and Bishop
2011, Lopez-Antia et al. 2013), potentially delaying migration
through reduced refueling. Sublethal doses of a neonicotinoid
caused significant decrease in food consumption, body mass
loss (possibly due to appetite suppression), and delayed de-
parture timing in White-crowned Sparrows (Zonotrichia
leucophrys) during migration (Eng et al. 2019). Ingestion of
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some organophosphates and neonicotinoids can also impair
migratory orientation (Vyas et al. 1995, Eng et al. 2017).

Lead and mercury are two of the most common and harm-
ful metal contaminants in the environment, though many
others exist (Larison et al. 2000, Burger et al. 2015). Birds
bioaccumulate both lead and mercury (Rimmer et al. 20085,
Roux and Marra 2007, Burger et al. 2015), with lead tox-
icity observed in migrating vultures (Kenny et al. 2015)
and waterfowl (Havera et al. 1992). Lead toxicity has also
been observed in songbirds near contaminated areas (Beyer
et al. 2013). Mercury exposure during the breeding season
may decrease the probability of songbird survival during mi-
gration (Ma et al. 2018). Similar to certain pesticides, the
physical exertion of migrating can mobilize tissue stores of
methylmercury, the most bioavailable and harmful form of
mercury, increasing its circulating levels (Seewagen et al.
2016). Methylmercury exposure can impair birds’ naviga-
tion and ability to fly (Ma et al. 2018, Moye et al. 2016).
Additionally, exposure to lead and methylmercury can hin-
der migration by interfering with refueling and reducing flight
endurance and performance through a variety of effects that
include altered metabolism (Seewagen et al. 2022), altered
immune function (Lewis et al. 2013, Vallverdu-Coll et al.
2019), anorexia, lethargy, ataxia (Seewagen 2020, Pain et al.
2019) diarrhea, convulsions, and paralysis (Pain et al. 2019).
Widespread environmental contaminants can thus negatively
affect fitness by degrading the health, energetic condition, and
orientation ability of migrating birds.

Free-Roaming Domestic Cats

Introduced mammalian predators pose a major threat to
bird species worldwide, driving biodiversity declines and ex-
tinctions across taxa (Courchamp et al. 2003, Doherty et al.
2016, Lees et al. 2022). Although parks within the urban or
agricultural matrix can provide important stopover habitat
for migrating birds (Archer et al. 2019, Amaya-Espinel and
Hostetler 2019), they may also host high numbers of novel
predators (With 2002, Santiago-Alarcon and Delgado-V
2017). In this section, we focus on free-roaming domestic cats
because of their global distribution, abundance, and docu-
mented impacts on birds throughout the annual cycle (Loss et
al. 2022). Although other introduced predators also threaten
birds (Kraus 2015, Doherty et al. 2016), we did not find suf-
ficient evidence of their nonlethal effects on birds during mi-
gration to include them in this review.

Free-roaming domestic cats kill billions of birds annually
(Blancher 2013, Loss et al. 2013, Li et al. 2021, Stobo-Wilson
et al. 2022) and have been implicated in the extinctions of
at least 40 bird species worldwide (Doherty et al. 2016).
While there are few estimates of cat predation specifically
during migration, 22% of observed mortalities at a stopover
site in South Korea were attributed to domestic cats (Bing
et al. 2012). The abundance of both unowned and owned
free-roaming cats increases with human population density
(McDonald and Skillings 2021, Cove et al. 2023), and birds
migrating through urbanized regions may be more likely to
encounter cats than in other phases of the annual cycle.

Nonlethal fitness costs of domestic cats likely arise from
birds’ antipredator responses (Cresswell 2008), which can in-
clude increased vigilance, flocking, foraging in closer proxim-
ity to cover, or avoiding risky habitats altogether (Lindstrém
1989, Lind and Cresswell 2006, Diaz et al. 2022). While there
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are few published studies on migrating birds’ behavioral re-
sponses to free-roaming cats during stopover (though see
Nemes 2023), their responses to native predators can pro-
vide insights. For example, American Redstarts (Setophaga
ruticilla) and Blue-gray Gnatcatchers (Polioptila caerulea)
on stopover used denser cover for foraging when migrating
hawks were more abundant (Cimprich et al. 2005). During
fall migration, birds were more abundant in habitat patches
where there was no tradeoff between food resources and
safety from hawk predation (McCabe and Olsen 2015).
Migrants that have depleted their fat reserves, such as those
that have newly arrived to a stopover site, take more risks
when foraging (Cimprich and Moore 2006) and thus may be
more susceptible to predation from cats (Dierschke 2003).

While antipredator behaviors increase short-term survival,
they may come at the expense of migration speed or efficiency
(Alerstam and Lindstrém 1990, Lind and Cresswell 2006).
Behaviors such as vigilance and habitat switching can reduce
risk, but migrating birds that reduce their foraging intensity
or avoid locations with the best food resources may suffer
lower fuel deposition rates or depart from stopover sites with
less fuel (Alerstam and Lindstrém 1990, Lindstrom 1990).
For example, migrating birds can reduce predation risk by
carrying lower fuel loads because increased fat stores reduce
take-off ability and maneuverability (Kullberg et al. 2000).
However, departing from stopover with less fuel means fly-
ing a shorter distance before stopping, which may slow the
migration rate and impose delayed costs in the form of lower
reproductive potential (Lindstrom 1990). At the population
level, the fitness costs of such “non-consumptive effects”
can even outweigh the “consumptive effects” of predation
(Preisser et al. 2005, Hamer et al. 2021). Based on migrating
birds’ responses to native predators, we expect them to ex-
hibit antipredator responses to free-roaming cats as well
(though see Hamer et al. 2021). Consequently, despite a lack
of published research, we surmise that cats likely exert sub-
stantial fitness costs via non-consumptive fear effects that in-
fluence energetic condition and timing (Cresswell 2008, Loss
and Marra 2017).

Introduced Plants

With more than 13,000 species of vascular plants natural-
ized beyond their native habitat (van Kleunen et al. 2015)
and new introductions occurring regularly (Seebens et al.
2017), migrating birds are likely to stop over in habitats with
introduced plants during their journeys. While not all intro-
duced species are harmful, we specifically discuss species with
negative ecological consequences. Migrants can suffer dir-
ect mortality from introduced plants through entanglement
(Underwood and Underwood 2013, Arcilla et al. 2015) or
overconsumption of toxic berries (Lincoln 1931); however,
introduced plants are more likely to pose a nonlethal threat
to migrants.

Introduced plants alter community structure and compos-
ition by replacing native species (McKinney 2004, Burghardt
et al. 2009, Nelson et al. 2017) and reducing stopover habi-
tat quality (McWilliams et al. 2004, 2021; Guglielmo et al.
2017). Important nutritional components in berries serve as
antioxidants and immune stimulants in migrating birds (re-
viewed by Cooper-Mullin and McWilliams 2016), and native
fruits often contain greater concentrations of energy, fat, or
antioxidants than introduced ones (Bolser et al. 2013, Smith
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et al. 2013, Oguchi et al. 2017, but see Cullen et al. 2020).
As a result, fall migrants are more likely to settle into habi-
tats with fewer introduced plants and preferentially consume
native fruits (Bolser et al. 2013, Oguchi et al. 2017, 2018;
Gallinat et al. 2020). Migrants that use stopover habitats with
more introduced fruiting plants have lower concentrations of
triglycerides in their bloodstream, indicating poorer refuel-
ing performance (Smith and McWilliams 2010, Smith et al.
20135). Despite the evidence that native fruits are nutritionally
superior and preferred by migrating birds, the effects of intro-
duced fruits on stopover duration and subsequent migratory
performance have not yet been fully investigated.

Introduced plants can influence prey availability and mi-
grant behavior at stopover sites (Burghardt et al. 2010,
Narango et al. 2017, van Riper et al. 2018). Sedge Warblers
(Acrocephalus schoenobaenus) in Iberia experienced lower
fuel deposition rates and departed earlier from introduced
saltbush (Baccharis balimifolia) habitats than native reedbeds
(Phragmites spp.; Arizaga et al. 2013). Native cottonwood-
willow habitat in the southwestern U.S. possessed more
arthropod biomass during spring migration than non-native
saltcedar (Tamarix spp.) habitat (Cerasale and Guglielmo
2010) and saltcedar-dominated riparian areas are avoided by
most spring migrants (Fischer et al. 2015). However, complex
interactions between or within trophic levels can sometimes
result in migrants exploiting novel stopover habitats to
their benefit (Besterman et al. 2020). For example, Wilson’s
Warblers (Cardellina pusilla) released from interspecific com-
petition in cottonwood-willow habitat experienced greater
refueling performance in saltcedar-dominated areas habitat
(Cerasale and Guglielmo 2010). Introduced plants play an
important role in migrant condition and possibly timing, po-
tentially reducing reproductive success or future survival.

Wildfires

Humans have increased the frequency, severity, and spatial ex-
tent of wildfires by igniting fires (Pechony and Shindell 2010),
through fire suppression and land use practices (Bowman et
al. 2011), and by inducing climate change, which has inten-
sified storms and altered temperature and precipitation pat-
terns (Krawchuk et al. 2009, Jolly et al. 2015, Martinuzzi
et al. 2016). For example, wildfire season in western North
America starts earlier and lasts longer than in the past and
now coincides with part or all of spring and fall migration for
many birds (Westerling et al. 2003, Westerling 2016, Overton
et al. 2022). Thus, we classify extreme wildfires as an “an-
thropogenic threat” while acknowledging the natural origin
of many fires (Bowman et al. 2011), the dependence of many
ecosystems on healthy fire regimes (McLauchlan et al. 2020),
and the importance of Indigenous fire stewardship to conser-
vation (Hoffman et al. 2021).

Severe wildfires in 2020 were estimated to kill over 1 mil-
lion birds in Brazil (Tomas et al. 2021) and between 100,000
and 1 million migrating birds in the U.S. (Kittelberger et al.
2022). Wildfires can injure or kill birds via burning or smoke
inhalation (Sanderfoot and Holloway 2017, Nimmo et al.
2021, Sanderfoot et al. 2021, Jolly et al. 2022). Migrating
birds may be burned if they inadvertently fly too close to
fires (Stone 1906); few studies have documented this phe-
nomenon with wildfires, but gas flares at offshore oil and gas
drilling platforms regularly kill migrating birds (Bjorge 1987,
Ronconi et al. 20135; see also ALAN section above.)

C. Nemes et al.

The efficiency of avian respiratory systems may increase
their susceptibility to toxic compounds in wildfire smoke
(Sanderfoot and Holloway 2017, Sanderfoot et al. 2021).
Community scientists recently documented a mass avian cas-
ualty event coinciding with a period of intense wildfire ac-
tivity across the western U.S. (Yang et al. 2021, Irannezhad
et al. 2022) where the deaths of migrating passerines were
correlated with proximity to both wildfires and poor air
quality (Yang et al. 2021). Live birds captured during this
period showed poor body condition and evidence of emaci-
ation (Kittelberger et al. 2022), indicating that fires may have
spurred them to migrate before they were ready or inter-
fered with their ability to refuel en route (Yang et al. 2021,
Irannezhad et al. 2022, Kittelberger et al. 2022).

Wildfires can influence the behavior of birds in flight.
During a period of intense wildfire activity, migrating Tule
Greater White-fronted Geese (Anser albifrons elgasi) landed
prematurely, adjusted their flight paths, and attempted to fly
over smoke plumes (Overton et al. 2022). Some individuals
made inland stopovers that were far from their typical mi-
gration routes. Birds’ efforts to circumnavigate smoke plumes
increased the distances they traveled, doubling the time they
spent on migration (Overton et al. 2022). The energetic cost
of avoiding wildfires while migrating is probably substantial
(Kittelberger et al. 2022); Greater White-fronted Geese would
need to forage for an additional 4-6 days to compensate for
the increased energy expenditure (Overton et al. 2022). While
geese avoided wildfires, nocturnally migrating passerines are
frequently attracted to and disoriented by bright light (see
ALAN section above), and might be drawn towards wildfires
(Stone 1906, Bjorge 1987). Either attraction to or repulsion
from the light of wildfires could cause excess energy expend-
iture and changes to the migration route, requiring more time
to refuel and increasing the total time spent on migration.

Climate Change

Human activities have dramatically changed the global cli-
mate in ways that impact biodiversity and biological pro-
cesses across scales (Parmesan and Yohe 2003, Parmesan
2006, Rosenzweig et al. 2008). Climate change-related
phenological shifts, species range shifts, and altered wea-
ther patterns throughout the annual cycle can modify eco-
logical interactions and increase the challenges of migration
(Robinson et al. 2009, Blois et al. 2013, Kharouba et al.
2018, Bateman et al. 2020), ultimately contributing to popu-
lation declines (Northrup et al. 2019). While migrating birds
have always had to contend with periods of adverse weather
(Newton 2007), climate change may increase hazards during
migration by increasing the frequency and severity of wild-
fires and extreme weather events (Dale et al. 2001, Martinuzzi
et al. 2016), causing mass injury or mortality when birds in
flight encounter heavy rain, snow, fog or mist, or high winds
(reviewed in Newton 2007).

The nonlethal impacts of climate change on bird migra-
tion have been well studied. Climate change can alter the
timing of migration, particularly in the pre-breeding (spring)
season (Saino et al. 2011). Globally, birds are arriving in-
creasingly earlier to their breeding areas (Gordo 2007, Usui
et al. 2017), with average advances of 2-3 days per dec-
ade (Romano et al. 2022). Impacts on post-breeding migra-
tion timing are less consistent, with no clear global trends
in departure timing (Romano et al. 2022) but an overall
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increase in the duration of fall migration (Zimova et al.
2021, Horton et al. 2023). Birds might suffer from reduced
food availability if their migration timing is out of sync with
resource phenology (Carey 2009), a phenomenon called
phenological or trophic mismatch. Mismatch between mi-
grants’ arrival timing to breeding areas and peak food avail-
ability for their offspring has been suggested as a driver of
population declines in the Afro-Palearctic migration system
(Both et al. 2006, Saino et al. 2011). Phenological mis-
matches with food sources on stopover can reduce refuel-
ing ability (Bairlein and Huppop 2004, Kellermann and van
Riper 2015) and potentially migration rate. In some regions
climate change has decreased annual rainfall, reducing food
availability during migration. For example, low precipita-
tion at an important stopover site impaired the ability of
Eurasian Reed-warblers (Acrocephalus scirpaceus) to refuel
prior to crossing the Sahara Desert, reducing their annual
survival (Halupka et al. 2017). Conditions during stopover
carry over to affect reproductive timing and success: three
species of Afro-Palearctic migrants bred earlier in years
when migratory passage areas were warmer, and one spe-
cies bred earlier in response to higher rainfall on passage
(Finch et al. 2014), presumably due to increased insect prey
on stopover. Birds that encounter extreme weather en route
may be forced to make more frequent stops, which reduced
subsequent reproductive success in Black-bellied Plovers
(Pluvialis squatarola; Clements et al. 2022).

For temperate-breeding birds, warming temperatures may
enable some species to spend the stationary nonbreeding
season closer to their breeding areas, reducing the distances
they must migrate (Visser et al. 2009, Curley et al. 2020).
Other species show the opposite pattern, with proportionally
larger northward shifts in breeding latitude resulting in longer
average migration routes (Curley et al. 2020). Increases in mi-
gration distance due to climate change (Huntley et al. 2006,
Robinson et al. 2009, Zurell et al. 2018) may necessitate
longer or additional stops for birds to refuel (Schmaljohann
and Both 2017, Howard et al. 2018) and could expose them
to additional threats or reduce time available for reproduc-
tion and molt (Carey 2009). Organisms differ in their range
shifts and phenological responses to climate change (Blois et
al. 2013, Kharouba et al. 2018), reshuffling ecological com-
munities and potentially influencing food sources (Bairlein
and Hiippop 2004) or migrants’ interactions en route (Cohen
and Satterfield 2020). By disrupting patterns of phenology,
weather, and species distributions, climate change alters birds’
migration timing, routes, and ability to exploit resources
throughout the annual cycle.

INTERACTING THREATS

Consensus is emerging that anthropogenic threats act in com-
bination to impact birds and overall biodiversity (Brook et
al. 2008, Isbell et al. 2022, Kimmel et al. 2022). Migrating
birds are exposed to multiple anthropogenic factors en route
and often encounter several threats simultaneously (Figure 3).
Many such factors abound in urban and industrial areas, ef-
fectively transforming these into hubs for the interaction of
threats and facilitating negative effects (Richard et al. 2021).
Similarly, agricultural intensification is a source of multiple
threats such as environmental contaminants, habitat loss,
noise pollution, and introduced flora and fauna (Stanton et
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al. 2018), all of which can interact to harm migrating birds.
Threats may be additive, where their combined effect is equal
to the sum of the independent effects, or synergistic, where
the combined effect is greater than the sum of the individ-
ual effects (Darling and Co6té 2008). For example, noise pol-
lution reduces bird abundance during stopover (McClure et
al. 2013) but its influence is greater when ALAN is also pre-
sent, and some species are affected only when light and noise
co-occur (Wilson et al. 2021).

Threats interact in complex ways, and the effect of a single
threat may expose birds to one or more other anthropo-
genic or natural stressors (Figure 3). For instance, attrac-
tion to ALAN can increase risk of collisions with structures
(Gauthreaux and Belser 2006). The combination of ALAN
and collisions increases mortality by introduced predators be-
cause free-roaming domestic cats and dogs prey on uncon-
scious or stunned birds after window collisions (Rebolo-Ifrdn
et al. 2021). ALAN can also increase mortality from native
predators that hunt nocturnally migrating songbirds that
are attracted to or disoriented by city lights (DeCandido and
Allen 2006). Birds’ antipredator responses to free-roaming
cats may draw the attention of native predators, a phenom-
enon documented during the breeding season (Bonnington et
al. 2013, Greenwell et al. 2019), and chronic noise pollution
may mask acoustic cues that migrating birds use to perceive
predators or to warn other individuals (Francis and Barber
2013, but see Pettinga et al. 2015). Furthermore, attraction
to artificial lights may increase migrants’ exposure to air pol-
lution and toxicants from urban areas (La Sorte et al. 2022)
and oil flares (Bjorge 1987). The immunosuppressive effects
of certain contaminants together with natural reductions in
immune response during migration might render migrating
birds especially vulnerable to disease (Gylfe et al. 2000, Owen
and Moore 2006, Vallverdu-Coll et al. 2015).

Birds that are weak, ill, or disoriented from exposure to
adverse weather or wildfire smoke may be more susceptible
to predation during stopover. Both native and introduced
predator species in fire-adapted ecosystems, including free-
roaming cats, exploit fire to hunt fleeing prey or hunt more
effectively in recently burned areas (Doherty et al. 2022).
Similarly, birds experiencing neurological impairment, mass
loss, or immunosuppression from ingestion of pesticides or
heavy metals could be more susceptible to building strikes,
extreme weather stress, vagrancy, or predation during migra-
tion (Galindo et al. 1985, Eng et al. 2017, 2019; Seewagen
2020). Although these interactions are not often studied ex-
plicitly, captive studies have demonstrated that birds dosed
with pesticides are more susceptible to domestic cat predation
(Galindo et al. 1985).

Anthropogenic climate change alters weather patterns,
phenology, and species distributions in ways that can increase
birds’ exposure or susceptibility to other threats (Figure
3B). Introduced species show range expansions with climate
change (Parmesan and Yohe 2003, Hellmann et al. 2008),
which may increase migrants’ probability of encountering
these threats en route (Robinson et al. 2009, Bateman et al.
2020, Kubelka et al. 2022). Climate change could also af-
fect availability of preferred foods during stopover by alter-
ing the phenology or distribution of introduced plant species
(Gallinat et al. 2020). Thus, the combined effects of multiple
interacting threats more accurately reflect their true level of
impact on migrating birds.
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FIGURE 3. Anthropogenic threat sources can interact to produce cumulative or synergistic effects on migrating birds. (A) We found several published
studies documenting interactions between pairs of threats during migration (black arrows), as well as studies that documented threat interactions
affecting birds outside of the migration period (or affecting non-migratory species) that we imagine could also occur during migration (white arrows).
We hypothesize that additional interactions between threats are possible but did not find published evidence for them (gray dashed arrows). Numbers
at the head of each arrow denote the corresponding source(s); for hypothesized interactions, sources provide evidence for how expected interactions
might arise. (B) By altering migration phenology (clock symbol), inducing range shifts (shaded circles symbol), and increasing the frequency of extreme
weather events (lightning storm symbol), climate change may increase migrating birds' exposure to introduced plants, introduced predators, collisions,
and wildfires. For clarity, we only provide example citations in the figure rather than an exhaustive list of all sources relevant to a given interaction.
Figure citations: (1) Wilson et al. (2021), (2) Dolan et al. (2011), (3) Gauthreaux and Belser 2006, (4) Kinde et al. (2012), (5) (Quinn et al. (2006), (6)
DeCandido and Allen (2006), (7) Rebolo-Ifran et al. (2021), (8) Newton (2007), (9) Mineau and Tucker (2002), (10) La Sorte et al. (2022), (11) Russell
(2005), (12) Shimeta et al. (2016), (13) Bautista (2007), (14) Galindo et al. (1985), (15) Doherty et al. (2022), (16) Viyas et al. (2009), (17) Robinson et al.
(2009), (18) Bateman et al. (2016), (19) Martinuzzi et al. (2016), (20) Gallinat et al. (2020), (21) Blois et al. (2013), (22) Hellmann et al. (2008), (23) Hilton et

al. (1999), (24) Loss et al. (2020), (25) Bateman et al. (2020).

KNOWLEDGE GAPS AND FUTURE
DIRECTIONS

Arguably, the most critical unanswered question is the ex-
tent to which nonlethal effects during migration contribute to
population declines. We have outlined potential ways that ex-
posure to nonlethal anthropogenic hazards, singly or in com-
bination, can impose fitness costs. In practice, nonlethal effects
that occur during migration are extremely difficult to link to
population trends; the same is true for even well-studied mor-
tality sources (Loss et al. 2012, Rosenberg et al. 2019, though
see Katzner et al. 2020). This knowledge gap is due to several
critical limitations inherent to studying migratory animals.
First, movements are difficult to track; populations differ in
their migration routes and timing, and individuals of many
species are too small to precisely monitor their entire jour-
neys in real time. Second, as birds migrate, experiences at one
location may carry over to reduce fitness at a later time and
place (Finch et al. 2014, Grandmont et al. 2023), making it
difficult to pinpoint the consequences of nonlethal stressors
and their interactions. Finally, there is a geographic bias in mi-
gration research that makes it difficult to quantify the effects

of threats with variable occurrence throughout the migratory
route. Below, we describe these limitations in further detail
and suggest approaches to address these knowledge gaps.

A major challenge in linking en route anthropogenic threats
to population declines is that populations vary in their migra-
tory timing and routes, exposing them to different levels of
risk (Kirby et al. 2008, Hewson et al. 2016, Pearce-Higgins
et al. 2017). We have a poor understanding of migratory con-
nectivity for most species (Cohen et al. 2018, Marra et al.
2019), further hampered by the difficulty of tracking the full
migrations of small birds in real time. To identify where and
when bird populations are exposed to threats during migra-
tion, further research on migratory connectivity (Webster et
al. 2002, Cohen et al. 2019) together with spatially explicit
threat maps that cover entire migration corridors (Tulloch
et al. 2015, Bowler et al. 2020, Buchan et al. 2022) and ex-
tend upwards into the airspace (Davy et al. 2017, Cohen et al.
2022a) will prove invaluable. Incorporating a temporal com-
ponent to create dynamic threat maps can more accurately
capture the seasonal ebbs and flows in risk that birds experi-
ence as they move across continents (Runge et al. 2016, Bauer
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et al. 2019). Mapping spatiotemporal patterns of risk as well
as migration bottlenecks (Buehler and Piersma 2008, Bayly
et al. 2018, Gémez et al. 2019, Horton et al. 2019) and im-
portant stopover sites (Buler and Dawson 2014, Cohen et al.
2021, Guo et al. 2023) can inform the design of dynamic ra-
ther than static protected areas that enable safe passage at the
most critical times and places for migratory species (Runge et
al. 2014, Johnston et al. 2015, Reynolds et al. 2017).

Over broad spatial scales, environmental conditions en
route influence migration timing and survival (Tettrup et al.
2012, Briedis et al. 2017), but less clear are any compound-
ing effects of more localized threats or of repeated exposure
throughout the migration period. We can imagine that a bird
that sustains an injury at one stopover site presumably re-
mains at increased risk of predation at subsequent stopover
sites, unless and until it has fully recovered, but few studies
have examined how long nonlethal effects persist. There is
increasing evidence that conditions at a single stopover site
can carry over to affect later survival and reproduction (e.g.,
Halupka et al. 2017, Clements et al. 2022, Grandmont et al.
2023). For instance, Snow Geese (Anser caerulescens) ex-
posed to adverse conditions at a single spring stopover site
have lower nesting success and may skip breeding altogether
(Legagneux et al. 2012, Grandmont et al. 2023).

A variety of experimental and model-based approaches can
help quantify the nonlethal effects of threats and their inter-
actions. Researchers can couple individual migration tracking
with manipulations of threat sources (Birnie-Gauvin et al.
2020, Nemes 2023), such as experimentally elevating noise
or light pollution (McClure et al. 2013, Cabrera-Cruz et al.
2021), or can compare the performance of birds at sites with
different levels or combinations of threats (Hewson et al. 2016,
Sanderfoot et al. 2021). Increased bird banding and tagging
efforts in urban and suburban habitats throughout species’
nonbreeding ranges would provide useful comparisons of the
physiology, behavior, and survival of populations exposed
to elevated levels of anthropogenic disturbance during mi-
gration (Dunn 2016). Anthropogenic threats rarely occur in
isolation in the real world, and single-factor experimental ma-
nipulations should be complementary to research on multiple
interacting stressors during migration. Theoretical models
of behavior, including individual-based models, offer oppor-
tunities to investigate how individuals’ responses to threats
during migration carry over to affect life history events such
as reproduction (Bauer and Klaassen 2013). Full annual cycle
population models that incorporate the influence of en route
nonlethal effects on subsequent per capita reproduction and
survival or population vital rates (Weber et al. 1999, Norris
and Taylor 2006, Ratikainen et al. 2007) can be used to guide
future research and inform spatial and temporal prioritiza-
tion for reducing nonlethal anthropogenic threats (Sheehy et
al. 2011, Hostetler et al. 2015).

Finally, although we did not conduct a systematic review,
we noted clear bias in the geographic locations of studies on
nonlethal effects. Within the Nearctic-Neotropical migration
system, more research is needed on threats outside of the U.S.
and Canada (Bayly et al. 2016, 2018). Likewise, while threats
to migrating waterbirds within the East Asian-Australasian
migration system have received increasing research attention
(Amano et al. 2010, Szabo et al. 2016, Lei et al. 2019, Yong
et al. 2021), threats and life history information for other
taxa, particularly passerines, are less understood (Yong et al.
2015, 2018; Yamaura et al. 2017). Similarly, Afro-Palearctic
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bird migration has been well studied within Europe and parts
of the Middle East, but the ecology of many species during
migration and nonbreeding seasons in sub-Saharan Africa re-
mains poorly documented (Vickery et al. 2014, Marcacci et al.
2022). These patterns reflect a well-established Global North
bias in conservation research and publication (MacGregor-
Fors et al. 2020, Maas et al. 2021, Soares et al. 2023) that
undermines efforts to protect migrating birds and the ecosys-
tems upon which they rely across the annual cycle (Wilson
et al. 2016). Threats can vary across migration corridors and
between populations based on socioeconomic, geographic,
ecological, cultural, and policy differences (Runge et al. 2014,
Horton et al. 2019). For example, while organophosphate in-
secticides have been outlawed in the U.S. and Canada since
the 1970s, Neotropical migrants may be exposed in parts
of their nonbreeding ranges where these compounds remain
legal (Maldonado et al. 2017). To design effective trans-
boundary conservation measures that simultaneously benefit
birds and people (Kark et al. 2015, Saunders et al. 2021), we
must understand how the variable occurrence and timing of
threats influence the success of migration through these re-
gions (Runge et al. 2014).

CONSERVATION IMPLICATIONS

Why should researchers, conservation managers, and the
public be concerned about nonlethal effects of human activ-
ity on migrating birds? Alleviating sources of en route mor-
tality will undoubtedly reduce their nonlethal effects as well,
but specifically addressing nonlethal effects will also lead to
more robust protections. For example, environmental impact
assessments that only evaluate direct bird mortality might
underestimate the consequences of proposed development in
migration corridors, which can degrade terrestrial or aerial
habitat for migrating birds without killing them (Marques et
al. 2020). Conversely, conservation efforts based on an in-
complete understanding of if and how nonlethal effects in-
fluence fitness may waste limited resources with little benefit
for populations (Fraser et al. 2018, Wilson et al. 2020). We
surmise that a fuller understanding of how nonlethal effects
impact migrants en route will help elucidate why some in-
dividuals and populations are more susceptible than others,
which will guide targeted conservation measures (Bauer et al.
2019, Katzner et al. 2020).

Our review indicates that most nonlethal effects of
anthropogenic threats during migration are even less well
documented and quantified than direct mortality from an-
thropogenic threats. Furthermore, the magnitude of individual
threat effects and their interactions on migrating birds depends
on the local context as well as the species involved, meaning
that a single ranking of relative threat level due to a particu-
lar source for all taxa and flyways may not be meaningful
(Bellard et al. 2022). Consequently, we have not attempted to
rank the importance or severity of nonlethal effects of threats
en route, but we recognize that with increased knowledge
such a ranking would be beneficial for prioritizing conser-
vation action and raising awareness (e.g., Kirby et al. 2008).
However, we suggest that threats exhibiting a higher number
of interactions with other threats are likely having the greatest
impact on migrating birds (Figure 3). As an example, ALAN
produces documented or hypothesized interactions with five
other threats, meaning that alleviating ALAN will concur-
rently reduce migrating birds’ exposure or susceptibility to
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other anthropogenic hazards. Similarly, multiple threats can
increase migrants’ vulnerability to free-roaming cats, and thus
managing cat populations could reduce the total impact of
these threats on migrating birds (Lepczyk et al. 2022).

A further reason to mitigate nonlethal effects of threats is
that humans often experience negative effects from the same
factors that harm birds, such as sensory pollution and envir-
onmental contaminants (Sekercioglu et al. 2016, Liang et al.
2020). Thus, alleviating nonlethal effects on migrating birds
will simultaneously benefit human health and well-being in
ways that measures to reduce direct bird mortality, such as
installing bird-safe windows, typically do not (Liang et al.
2020). This provides an opportunity for conservation practi-
tioners to partner with stakeholders who might not otherwise
support bird-friendly policies to achieve shared benefits for
both migrating birds and public health (Sandifer et al. 20135,
Sekercioglu et al. 2016, Aronson et al. 2017). In all cases,
understanding and successfully reducing both lethal and
nonlethal effects of anthropogenic threats across the entirety
of bird migration corridors will require international cooper-
ation and input from partners across governments, institu-
tions, and the public (Runge et al. 2017, Yong et al. 2018,
Marcacci et al. 2022).

CONCLUSION

Simply surviving the migratory journey is of little use if birds
arrive to their destination too late, unhealthy, or exhausted to
successfully reproduce or survive the next season (Hedenstrom
2008, Senner et al. 2015, Moore 2018). Although challen-
ging to study, understanding if and how threats encountered
during migration impose fitness costs that scale up to influ-
ence migratory bird populations, and how the effects of those
threats change or increase as they interact with other threat
sources, will enhance conservation (Bowlin et al. 2010, Runge
et al. 2014, 2016; Katzner et al. 2020). With migratory spe-
cies facing steep declines (Vickery et al. 2014; Rosenberg et
al. 2019), the impact of human activity on migrating birds
should not be measured solely by mortality, but also in
changes to a bird’s migration timing, route, and physiological
condition (Moore 2018). Focusing exclusively on immediate
mortality risks underestimating the full costs of human ac-
tivity on migrating birds and our responsibility to lessen the
barriers that impede successful migration.
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